Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phosphoric Metabolites Link Phosphate Import and Polysaccharide Biosynthesis for Candida albicans Cell Wall Maintenance.

Identifieur interne : 000068 ( Main/Exploration ); précédent : 000067; suivant : 000069

Phosphoric Metabolites Link Phosphate Import and Polysaccharide Biosynthesis for Candida albicans Cell Wall Maintenance.

Auteurs : Ning-Ning Liu [États-Unis] ; Maikel Acosta-Zaldívar [États-Unis] ; Wanjun Qi [États-Unis] ; Joann Diray-Arce [États-Unis] ; Louise A. Walker [Royaume-Uni] ; Theodore J. Kottom [États-Unis] ; Rachel Kelly [États-Unis] ; Min Yuan [États-Unis] ; John M. Asara [États-Unis] ; Jessica Ann Lasky-Su [États-Unis] ; Ofer Levy [États-Unis] ; Andrew H. Limper [États-Unis] ; Neil A R. Gow [Royaume-Uni] ; Julia R. Köhler [États-Unis]

Source :

RBID : pubmed:32184254

Abstract

The Candida albicans high-affinity phosphate transporter Pho84 is required for normal Target of Rapamycin (TOR) signaling, oxidative stress resistance, and virulence of this fungal pathogen. It also contributes to C. albicans' tolerance of two antifungal drug classes, polyenes and echinocandins. Echinocandins inhibit biosynthesis of a major cell wall component, beta-1,3-glucan. Cells lacking Pho84 were hypersensitive to other forms of cell wall stress beyond echinocandin exposure, while their cell wall integrity signaling response was weak. Metabolomics experiments showed that levels of phosphoric intermediates, including nucleotides like ATP and nucleotide sugars, were low in pho84 mutant compared to wild-type cells recovering from phosphate starvation. Nonphosphoric precursors like nucleobases and nucleosides were elevated. Outer cell wall phosphomannan biosynthesis requires a nucleotide sugar, GDP-mannose. The nucleotide sugar UDP-glucose is the substrate of enzymes that synthesize two major structural cell wall polysaccharides, beta-1,3- and beta-1,6-glucan. Another nucleotide sugar, UDP-N-acetylglucosamine, is the substrate of chitin synthases which produce a stabilizing component of the intercellular septum and of lateral cell walls. Lack of Pho84 activity, and phosphate starvation, potentiated pharmacological or genetic perturbation of these enzymes. We posit that low substrate concentrations of beta-d-glucan- and chitin synthases, together with pharmacologic inhibition of their activity, diminish enzymatic reaction rates as well as the yield of their cell wall-stabilizing products. Phosphate import is not conserved between fungal and human cells, and humans do not synthesize beta-d-glucans or chitin. Hence, inhibiting these processes simultaneously could yield potent antifungal effects with low toxicity to humans.IMPORTANCECandida species cause hundreds of thousands of invasive infections with high mortality each year. Developing novel antifungal agents is challenging due to the many similarities between fungal and human cells. Maintaining phosphate balance is essential for all organisms but is achieved completely differently by fungi and humans. A protein that imports phosphate into fungal cells, Pho84, is not present in humans and is required for normal cell wall stress resistance and cell wall integrity signaling in C. albicans Nucleotide sugars, which are phosphate-containing building block molecules for construction of the cell wall, are diminished in cells lacking Pho84. Cell wall-constructing enzymes may be slowed by lack of these building blocks, in addition to being inhibited by drugs. Combined targeting of Pho84 and cell wall-constructing enzymes may provide a strategy for antifungal therapy by which two sequential steps of cell wall maintenance are blocked for greater potency.

DOI: 10.1128/mBio.03225-19
PubMed: 32184254
PubMed Central: PMC7078483


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Phosphoric Metabolites Link Phosphate Import and Polysaccharide Biosynthesis for Candida albicans Cell Wall Maintenance.</title>
<author>
<name sortKey="Liu, Ning Ning" sort="Liu, Ning Ning" uniqKey="Liu N" first="Ning-Ning" last="Liu">Ning-Ning Liu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Acosta Zaldivar, Maikel" sort="Acosta Zaldivar, Maikel" uniqKey="Acosta Zaldivar M" first="Maikel" last="Acosta-Zaldívar">Maikel Acosta-Zaldívar</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Qi, Wanjun" sort="Qi, Wanjun" uniqKey="Qi W" first="Wanjun" last="Qi">Wanjun Qi</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Diray Arce, Joann" sort="Diray Arce, Joann" uniqKey="Diray Arce J" first="Joann" last="Diray-Arce">Joann Diray-Arce</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Precision Vaccines Program, Boston Children's Hospital, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Precision Vaccines Program, Boston Children's Hospital, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Walker, Louise A" sort="Walker, Louise A" uniqKey="Walker L" first="Louise A" last="Walker">Louise A. Walker</name>
<affiliation wicri:level="1">
<nlm:affiliation>Aberdeen Fungal Group, Institute of Medical Sciences, Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Aberdeen Fungal Group, Institute of Medical Sciences, Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen</wicri:regionArea>
<wicri:noRegion>Aberdeen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kottom, Theodore J" sort="Kottom, Theodore J" uniqKey="Kottom T" first="Theodore J" last="Kottom">Theodore J. Kottom</name>
<affiliation wicri:level="2">
<nlm:affiliation>Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kelly, Rachel" sort="Kelly, Rachel" uniqKey="Kelly R" first="Rachel" last="Kelly">Rachel Kelly</name>
<affiliation wicri:level="2">
<nlm:affiliation>Channing Division of Network Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Channing Division of Network Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yuan, Min" sort="Yuan, Min" uniqKey="Yuan M" first="Min" last="Yuan">Min Yuan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Asara, John M" sort="Asara, John M" uniqKey="Asara J" first="John M" last="Asara">John M. Asara</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lasky Su, Jessica Ann" sort="Lasky Su, Jessica Ann" uniqKey="Lasky Su J" first="Jessica Ann" last="Lasky-Su">Jessica Ann Lasky-Su</name>
<affiliation wicri:level="2">
<nlm:affiliation>Channing Division of Network Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Channing Division of Network Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Levy, Ofer" sort="Levy, Ofer" uniqKey="Levy O" first="Ofer" last="Levy">Ofer Levy</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Precision Vaccines Program, Boston Children's Hospital, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Precision Vaccines Program, Boston Children's Hospital, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Limper, Andrew H" sort="Limper, Andrew H" uniqKey="Limper A" first="Andrew H" last="Limper">Andrew H. Limper</name>
<affiliation wicri:level="2">
<nlm:affiliation>Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gow, Neil A R" sort="Gow, Neil A R" uniqKey="Gow N" first="Neil A R" last="Gow">Neil A R. Gow</name>
<affiliation wicri:level="1">
<nlm:affiliation>Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, Aberdeen</wicri:regionArea>
<wicri:noRegion>Aberdeen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kohler, Julia R" sort="Kohler, Julia R" uniqKey="Kohler J" first="Julia R" last="Köhler">Julia R. Köhler</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA julia.koehler@childrens.harvard.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32184254</idno>
<idno type="pmid">32184254</idno>
<idno type="doi">10.1128/mBio.03225-19</idno>
<idno type="pmc">PMC7078483</idno>
<idno type="wicri:Area/Main/Corpus">000102</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000102</idno>
<idno type="wicri:Area/Main/Curation">000102</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000102</idno>
<idno type="wicri:Area/Main/Exploration">000102</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Phosphoric Metabolites Link Phosphate Import and Polysaccharide Biosynthesis for Candida albicans Cell Wall Maintenance.</title>
<author>
<name sortKey="Liu, Ning Ning" sort="Liu, Ning Ning" uniqKey="Liu N" first="Ning-Ning" last="Liu">Ning-Ning Liu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Acosta Zaldivar, Maikel" sort="Acosta Zaldivar, Maikel" uniqKey="Acosta Zaldivar M" first="Maikel" last="Acosta-Zaldívar">Maikel Acosta-Zaldívar</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Qi, Wanjun" sort="Qi, Wanjun" uniqKey="Qi W" first="Wanjun" last="Qi">Wanjun Qi</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Diray Arce, Joann" sort="Diray Arce, Joann" uniqKey="Diray Arce J" first="Joann" last="Diray-Arce">Joann Diray-Arce</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Precision Vaccines Program, Boston Children's Hospital, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Precision Vaccines Program, Boston Children's Hospital, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Walker, Louise A" sort="Walker, Louise A" uniqKey="Walker L" first="Louise A" last="Walker">Louise A. Walker</name>
<affiliation wicri:level="1">
<nlm:affiliation>Aberdeen Fungal Group, Institute of Medical Sciences, Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Aberdeen Fungal Group, Institute of Medical Sciences, Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen</wicri:regionArea>
<wicri:noRegion>Aberdeen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kottom, Theodore J" sort="Kottom, Theodore J" uniqKey="Kottom T" first="Theodore J" last="Kottom">Theodore J. Kottom</name>
<affiliation wicri:level="2">
<nlm:affiliation>Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kelly, Rachel" sort="Kelly, Rachel" uniqKey="Kelly R" first="Rachel" last="Kelly">Rachel Kelly</name>
<affiliation wicri:level="2">
<nlm:affiliation>Channing Division of Network Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Channing Division of Network Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yuan, Min" sort="Yuan, Min" uniqKey="Yuan M" first="Min" last="Yuan">Min Yuan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Asara, John M" sort="Asara, John M" uniqKey="Asara J" first="John M" last="Asara">John M. Asara</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lasky Su, Jessica Ann" sort="Lasky Su, Jessica Ann" uniqKey="Lasky Su J" first="Jessica Ann" last="Lasky-Su">Jessica Ann Lasky-Su</name>
<affiliation wicri:level="2">
<nlm:affiliation>Channing Division of Network Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Channing Division of Network Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Levy, Ofer" sort="Levy, Ofer" uniqKey="Levy O" first="Ofer" last="Levy">Ofer Levy</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Precision Vaccines Program, Boston Children's Hospital, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Precision Vaccines Program, Boston Children's Hospital, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Limper, Andrew H" sort="Limper, Andrew H" uniqKey="Limper A" first="Andrew H" last="Limper">Andrew H. Limper</name>
<affiliation wicri:level="2">
<nlm:affiliation>Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gow, Neil A R" sort="Gow, Neil A R" uniqKey="Gow N" first="Neil A R" last="Gow">Neil A R. Gow</name>
<affiliation wicri:level="1">
<nlm:affiliation>Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, Aberdeen</wicri:regionArea>
<wicri:noRegion>Aberdeen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kohler, Julia R" sort="Kohler, Julia R" uniqKey="Kohler J" first="Julia R" last="Köhler">Julia R. Köhler</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA julia.koehler@childrens.harvard.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mBio</title>
<idno type="eISSN">2150-7511</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The
<i>Candida albicans</i>
high-affinity phosphate transporter Pho84 is required for normal Target of Rapamycin (TOR) signaling, oxidative stress resistance, and virulence of this fungal pathogen. It also contributes to
<i>C. albicans</i>
' tolerance of two antifungal drug classes, polyenes and echinocandins. Echinocandins inhibit biosynthesis of a major cell wall component, beta-1,3-glucan. Cells lacking Pho84 were hypersensitive to other forms of cell wall stress beyond echinocandin exposure, while their cell wall integrity signaling response was weak. Metabolomics experiments showed that levels of phosphoric intermediates, including nucleotides like ATP and nucleotide sugars, were low in
<i>pho84</i>
mutant compared to wild-type cells recovering from phosphate starvation. Nonphosphoric precursors like nucleobases and nucleosides were elevated. Outer cell wall phosphomannan biosynthesis requires a nucleotide sugar, GDP-mannose. The nucleotide sugar UDP-glucose is the substrate of enzymes that synthesize two major structural cell wall polysaccharides, beta-1,3- and beta-1,6-glucan. Another nucleotide sugar, UDP-
<i>N</i>
-acetylglucosamine, is the substrate of chitin synthases which produce a stabilizing component of the intercellular septum and of lateral cell walls. Lack of Pho84 activity, and phosphate starvation, potentiated pharmacological or genetic perturbation of these enzymes. We posit that low substrate concentrations of beta-d-glucan- and chitin synthases, together with pharmacologic inhibition of their activity, diminish enzymatic reaction rates as well as the yield of their cell wall-stabilizing products. Phosphate import is not conserved between fungal and human cells, and humans do not synthesize beta-d-glucans or chitin. Hence, inhibiting these processes simultaneously could yield potent antifungal effects with low toxicity to humans.
<b>IMPORTANCE</b>
<i>Candida</i>
species cause hundreds of thousands of invasive infections with high mortality each year. Developing novel antifungal agents is challenging due to the many similarities between fungal and human cells. Maintaining phosphate balance is essential for all organisms but is achieved completely differently by fungi and humans. A protein that imports phosphate into fungal cells, Pho84, is not present in humans and is required for normal cell wall stress resistance and cell wall integrity signaling in
<i>C. albicans</i>
Nucleotide sugars, which are phosphate-containing building block molecules for construction of the cell wall, are diminished in cells lacking Pho84. Cell wall-constructing enzymes may be slowed by lack of these building blocks, in addition to being inhibited by drugs. Combined targeting of Pho84 and cell wall-constructing enzymes may provide a strategy for antifungal therapy by which two sequential steps of cell wall maintenance are blocked for greater potency.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32184254</PMID>
<DateRevised>
<Year>2020</Year>
<Month>06</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2150-7511</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2020</Year>
<Month>03</Month>
<Day>17</Day>
</PubDate>
</JournalIssue>
<Title>mBio</Title>
<ISOAbbreviation>mBio</ISOAbbreviation>
</Journal>
<ArticleTitle>Phosphoric Metabolites Link Phosphate Import and Polysaccharide Biosynthesis for Candida albicans Cell Wall Maintenance.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e03225-19</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mBio.03225-19</ELocationID>
<Abstract>
<AbstractText>The
<i>Candida albicans</i>
high-affinity phosphate transporter Pho84 is required for normal Target of Rapamycin (TOR) signaling, oxidative stress resistance, and virulence of this fungal pathogen. It also contributes to
<i>C. albicans</i>
' tolerance of two antifungal drug classes, polyenes and echinocandins. Echinocandins inhibit biosynthesis of a major cell wall component, beta-1,3-glucan. Cells lacking Pho84 were hypersensitive to other forms of cell wall stress beyond echinocandin exposure, while their cell wall integrity signaling response was weak. Metabolomics experiments showed that levels of phosphoric intermediates, including nucleotides like ATP and nucleotide sugars, were low in
<i>pho84</i>
mutant compared to wild-type cells recovering from phosphate starvation. Nonphosphoric precursors like nucleobases and nucleosides were elevated. Outer cell wall phosphomannan biosynthesis requires a nucleotide sugar, GDP-mannose. The nucleotide sugar UDP-glucose is the substrate of enzymes that synthesize two major structural cell wall polysaccharides, beta-1,3- and beta-1,6-glucan. Another nucleotide sugar, UDP-
<i>N</i>
-acetylglucosamine, is the substrate of chitin synthases which produce a stabilizing component of the intercellular septum and of lateral cell walls. Lack of Pho84 activity, and phosphate starvation, potentiated pharmacological or genetic perturbation of these enzymes. We posit that low substrate concentrations of beta-d-glucan- and chitin synthases, together with pharmacologic inhibition of their activity, diminish enzymatic reaction rates as well as the yield of their cell wall-stabilizing products. Phosphate import is not conserved between fungal and human cells, and humans do not synthesize beta-d-glucans or chitin. Hence, inhibiting these processes simultaneously could yield potent antifungal effects with low toxicity to humans.
<b>IMPORTANCE</b>
<i>Candida</i>
species cause hundreds of thousands of invasive infections with high mortality each year. Developing novel antifungal agents is challenging due to the many similarities between fungal and human cells. Maintaining phosphate balance is essential for all organisms but is achieved completely differently by fungi and humans. A protein that imports phosphate into fungal cells, Pho84, is not present in humans and is required for normal cell wall stress resistance and cell wall integrity signaling in
<i>C. albicans</i>
Nucleotide sugars, which are phosphate-containing building block molecules for construction of the cell wall, are diminished in cells lacking Pho84. Cell wall-constructing enzymes may be slowed by lack of these building blocks, in addition to being inhibited by drugs. Combined targeting of Pho84 and cell wall-constructing enzymes may provide a strategy for antifungal therapy by which two sequential steps of cell wall maintenance are blocked for greater potency.</AbstractText>
<CopyrightInformation>Copyright © 2020 Liu et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Liu</LastName>
<ForeName>Ning-Ning</ForeName>
<Initials>NN</Initials>
<AffiliationInfo>
<Affiliation>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Acosta-Zaldívar</LastName>
<ForeName>Maikel</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0002-9562-6887</Identifier>
<AffiliationInfo>
<Affiliation>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Qi</LastName>
<ForeName>Wanjun</ForeName>
<Initials>W</Initials>
<Identifier Source="ORCID">0000-0003-4593-5734</Identifier>
<AffiliationInfo>
<Affiliation>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Diray-Arce</LastName>
<ForeName>Joann</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0003-2183-4269</Identifier>
<AffiliationInfo>
<Affiliation>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Precision Vaccines Program, Boston Children's Hospital, Boston, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Walker</LastName>
<ForeName>Louise A</ForeName>
<Initials>LA</Initials>
<Identifier Source="ORCID">0000-0002-2236-8776</Identifier>
<AffiliationInfo>
<Affiliation>Aberdeen Fungal Group, Institute of Medical Sciences, Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kottom</LastName>
<ForeName>Theodore J</ForeName>
<Initials>TJ</Initials>
<AffiliationInfo>
<Affiliation>Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kelly</LastName>
<ForeName>Rachel</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Channing Division of Network Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yuan</LastName>
<ForeName>Min</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Asara</LastName>
<ForeName>John M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lasky-Su</LastName>
<ForeName>Jessica Ann</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Channing Division of Network Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Levy</LastName>
<ForeName>Ofer</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Precision Vaccines Program, Boston Children's Hospital, Boston, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Limper</LastName>
<ForeName>Andrew H</ForeName>
<Initials>AH</Initials>
<AffiliationInfo>
<Affiliation>Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gow</LastName>
<ForeName>Neil A R</ForeName>
<Initials>NAR</Initials>
<AffiliationInfo>
<Affiliation>Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Köhler</LastName>
<ForeName>Julia R</ForeName>
<Initials>JR</Initials>
<AffiliationInfo>
<Affiliation>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA julia.koehler@childrens.harvard.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R21 AI137716</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U19 AI118608</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<Acronym>WT_</Acronym>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>MR/N006364/1</GrantID>
<Acronym>MRC_</Acronym>
<Agency>Medical Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mBio</MedlineTA>
<NlmUniqueID>101519231</NlmUniqueID>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Candida albicans </Keyword>
<Keyword MajorTopicYN="Y">Pho84</Keyword>
<Keyword MajorTopicYN="Y">antifungal agents</Keyword>
<Keyword MajorTopicYN="Y">cell wall</Keyword>
<Keyword MajorTopicYN="Y">chitin synthase</Keyword>
<Keyword MajorTopicYN="Y">glucan synthase</Keyword>
<Keyword MajorTopicYN="Y">nucleotide sugar</Keyword>
<Keyword MajorTopicYN="Y">phosphate metabolism</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32184254</ArticleId>
<ArticleId IdType="pii">mBio.03225-19</ArticleId>
<ArticleId IdType="doi">10.1128/mBio.03225-19</ArticleId>
<ArticleId IdType="pmc">PMC7078483</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2016 Nov 03;6:36055</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27808111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6216-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8016141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1145-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013;9(4):e1003276</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23633946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2009 Feb;46(2):210-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19032986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1979 Jan;110(1):185-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">372489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9565-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15972809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1984 Dec 10;259(23):14966-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6238967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6346-6351</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28566496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Mycol. 2019 Jul 25;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31342066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2011 Feb;79(4):968-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21299651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1984 Dec;160(3):884-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6389515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2010 Apr;76(2):517-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20384682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11295-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1837148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1995 Apr;15(4):2197-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7891715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1981 Jul;125(1):209-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6460846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2012 Apr 12;7(5):872-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22498707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2012 Apr;54(8):1110-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22412055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 Apr 04;4(4):e1000040</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18389063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2019 Apr 8;10(1):1607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30962448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2018 Apr 15;29(8):897-910</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29444955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2007 Mar;63(5):1399-413</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17302816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2016 Sep 1;27(17):2784-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27385340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2011 Jun;6(6):743-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21637195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Sep 8;275(36):27594-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10869365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta Mol Basis Dis. 2017 Jun;1863(6):1403-1409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28213126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13223-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8917572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Jan 20;270(3):1170-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7836376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antibiot (Tokyo). 2002 Feb;55(2):219-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12003006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Control Hosp Epidemiol. 2005 Jun;26(6):540-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16018429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2001 Mar;39(5):1414-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11251855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Jan 25;11(1):e0147175</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26809064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D592-D596</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27738138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2010 Jan 1;21(1):198-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19889834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2013 Feb;12(2):254-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23243062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2010 Mar;75(5):1112-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20132453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2012 Apr;11(4):532-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22286093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2019 Feb 21;14(2):e0212651</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30789965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2019 Sep;112(3):960-972</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31240791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2009 Sep;53(9):3963-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19596881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2019 Jan 29;10(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30696734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2016 Feb 15;62(4):e1-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26679628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2890-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20133652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2006;1(5):2253-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17406464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 Oct;31(10):1388-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18643953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2014 Jun;13(6):749-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24728191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2003 Nov;40(2):146-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14516767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2002 Mar 15;19(4):341-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11870857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2015 Oct;98(2):384-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26173379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2015 Jul;83(7):2816-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25916991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Jun 2;22(11):2668-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12773383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Sep 17;279(38):39628-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15271989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1996 Apr;178(8):2416-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8636047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2007 Dec;9(12):2938-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17645752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1993 Jul;13(7):4039-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8321211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1978 Sep 25;253(18):6484-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">355255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Mycol. 2001;39 Suppl 1:55-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11800269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2006 Feb;50(2):744-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16436735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2007 Dec;66(5):1164-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17971081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2009 Apr;281(4):459-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19153767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2002 Jan;184(1):29-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11741841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(1):e30119</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22253901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2018 Feb 6;9(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29437927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1997 Apr;179(7):2363-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9079924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2019 Mar;111(3):604-620</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30507002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1990 Feb;4(2):197-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2140148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5576-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15800048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Jul 11;272(28):17762-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9211929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20918-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19075239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2018 Jun 4;14(6):e1007126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29864141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2017 Mar;42(3):219-231</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27876550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1985 Apr;131(4):775-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3886837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2018 Jun 21;14(6):e1007021</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29928051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 1983 Nov;29(11):1514-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6322947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 Feb 27;537(1-3):128-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12606044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2019 Sep 11;10:2188</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31572393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 2005 Nov;184(2):129-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16184370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2018 Jul 30;14(7):e1007076</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30059535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2015 Aug 28;11(8):e1005133</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26317337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Scientifica (Cairo). 2012 Jan 1;2012:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23350039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2004 Oct 15;21(13):1121-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15484287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2014 Jun 15;209(12):1949-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24421256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1984 Jul 23;173(1):134-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6235127</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
<li>Minnesota</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Liu, Ning Ning" sort="Liu, Ning Ning" uniqKey="Liu N" first="Ning-Ning" last="Liu">Ning-Ning Liu</name>
</region>
<name sortKey="Acosta Zaldivar, Maikel" sort="Acosta Zaldivar, Maikel" uniqKey="Acosta Zaldivar M" first="Maikel" last="Acosta-Zaldívar">Maikel Acosta-Zaldívar</name>
<name sortKey="Asara, John M" sort="Asara, John M" uniqKey="Asara J" first="John M" last="Asara">John M. Asara</name>
<name sortKey="Asara, John M" sort="Asara, John M" uniqKey="Asara J" first="John M" last="Asara">John M. Asara</name>
<name sortKey="Diray Arce, Joann" sort="Diray Arce, Joann" uniqKey="Diray Arce J" first="Joann" last="Diray-Arce">Joann Diray-Arce</name>
<name sortKey="Diray Arce, Joann" sort="Diray Arce, Joann" uniqKey="Diray Arce J" first="Joann" last="Diray-Arce">Joann Diray-Arce</name>
<name sortKey="Kelly, Rachel" sort="Kelly, Rachel" uniqKey="Kelly R" first="Rachel" last="Kelly">Rachel Kelly</name>
<name sortKey="Kohler, Julia R" sort="Kohler, Julia R" uniqKey="Kohler J" first="Julia R" last="Köhler">Julia R. Köhler</name>
<name sortKey="Kottom, Theodore J" sort="Kottom, Theodore J" uniqKey="Kottom T" first="Theodore J" last="Kottom">Theodore J. Kottom</name>
<name sortKey="Lasky Su, Jessica Ann" sort="Lasky Su, Jessica Ann" uniqKey="Lasky Su J" first="Jessica Ann" last="Lasky-Su">Jessica Ann Lasky-Su</name>
<name sortKey="Levy, Ofer" sort="Levy, Ofer" uniqKey="Levy O" first="Ofer" last="Levy">Ofer Levy</name>
<name sortKey="Levy, Ofer" sort="Levy, Ofer" uniqKey="Levy O" first="Ofer" last="Levy">Ofer Levy</name>
<name sortKey="Limper, Andrew H" sort="Limper, Andrew H" uniqKey="Limper A" first="Andrew H" last="Limper">Andrew H. Limper</name>
<name sortKey="Qi, Wanjun" sort="Qi, Wanjun" uniqKey="Qi W" first="Wanjun" last="Qi">Wanjun Qi</name>
<name sortKey="Yuan, Min" sort="Yuan, Min" uniqKey="Yuan M" first="Min" last="Yuan">Min Yuan</name>
<name sortKey="Yuan, Min" sort="Yuan, Min" uniqKey="Yuan M" first="Min" last="Yuan">Min Yuan</name>
</country>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Walker, Louise A" sort="Walker, Louise A" uniqKey="Walker L" first="Louise A" last="Walker">Louise A. Walker</name>
</noRegion>
<name sortKey="Gow, Neil A R" sort="Gow, Neil A R" uniqKey="Gow N" first="Neil A R" last="Gow">Neil A R. Gow</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000068 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000068 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32184254
   |texte=   Phosphoric Metabolites Link Phosphate Import and Polysaccharide Biosynthesis for Candida albicans Cell Wall Maintenance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32184254" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020